Error distribution for gene expression data.
نویسندگان
چکیده
We present a new instance of Laplace's second Law of Errors and show how it can be used in the analysis of data from microarray experiments. This error distribution is shown to fit microarray expression data much better than a normal distribution. The use of this distribution in a parametric bootstrap leads to more powerful tests as we show that the t-test is conservative in this setting. We propose a biological explanations for this distribution based on the Pareto distribution of the variables used to compute the log ratios.
منابع مشابه
Presenting a new equation for estimation of daily coefficient of evaporation pan using Gene Expression Programming and comparing it with experimental methods (Case Study: Birjand Plain)
One of the most important componenets of water management in farms is estimating crops’ exact amount of evapotranspiration (water need). The FAO-Penman-Montheis (FPM) method is a standard method to evaluate other techniques which are used for easy calculation of potential evapotranspiration, when lysimeter datasheets are not available. This study was carried out based on 18 years’ climatic dat...
متن کاملApplication of Gene Expression Programming to water dissolved oxygen concentration prediction
This research based on record and collected data from four stations at Eymir Lake, Turkey, which are monitored daily in seven months. Water quality monitoring using former methods are time-needed and expensive, while the application of gene expression programming is more understandable, rapid, and reliable which is used in this article to provide a prediction for dissolved oxygen. The concentra...
متن کاملPrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...
متن کاملMammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease
Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...
متن کاملMultivariate Feature Extraction for Prediction of Future Gene Expression Profile
Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...
متن کاملMultivariate Feature Extraction for Prediction of Future Gene Expression Profile
Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical applications in genetics and molecular biology
دوره 4 شماره
صفحات -
تاریخ انتشار 2005